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2 1 COMBINATORICS

Note |

The following have been omitted from these notes for conciseness:
e Spanning trees of the fan graph (lecture 8 page 7)
e Counting the number of ways to pay n€ (lecture 8 page 9)
e Planted plane trees (lecture 9 page 4)

e Probabilistic method (lecture 12, lecture 13 page 2, lecture 14 page 2)

e Linear algebra method (lecture 14 page 3, lecture 15)

1 Combinatorics

1.1 Introduction

Notation: [n] :={1,2,...,n}

Number of ways to choose elements from a set |

Number of ways to choose k balls from an urn containing n balls:
o With order, with replacement: n*

n!

o With order, without replacement: (n); := =R (falling factorial)
Without order, with | (™) = L (binomial coeffici
e Without order, without replacement: k) = W =R (binomial coefficient)
k-1
e Without order, with replacement: (n i i >

The number of vectors in {0, 1}* with exactly k ones is equal to (Z)

A multiset is a generalization of a set which allows duplicates.

Binomial notation for setsl

PRECEPRE

Pigeon-hole principle |

Pigeon-hole principle:

If p pigeons are divided among h < p pigeon-holes, then some hole has > 2 pigeons.

Advanced pigeon-hole principle:

If p pigeons are divided among h pigeon-holes with h(t — 1) < p, then some hole has > t pigeons.

Theorem Inclusion-exclusion principle |

Let V7,..., Vi be subsets of a finite set V. i

VIUVaU.. UV =) (-1 S Van...nV]

r=1 1<i1<in<k

k
VNV UVU UV =IVI+D (D)7 | Y [Vin...nV

r=1 1<y <in<k

Derangements |
nl 1

A derangement is a permutation with no fixed points. #(derangements of [n]) = L + 2J
e
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1.2 Counting circular words
1.2.1 The Mdbius function

Theorem Prime decomposition theoreml

For every positive integer n € N there is precisely one way to write it as
n=pi'p5*...pet

where k € N, py,...,pg are primes, and ey, ..., e, € N.

Definition Mébius function |

1 ifn=1
wu(n) =40 if n | p? for some prime p
(—=1)* if n is the product of k distinct primes

Lemma |

Z,u(n) = 1{1} Vn e N
d|n

Theorem Moébius inversion theoreml

Let F,G: N — R.

Fn)=Y G(d) YneN = Gn)=Y_ uld)F (%) Vn eN

d|n d|n

1.2.2 Words

Definition Words |

Let A be an alphabet (a finite set). A word of length n is a sequence of length n of symbols in A.

We can define two maps on words:

Shift map: o(w; ... wy) := ws ... wpw Reverse map: 7(wj ... w,) = WpWp_1 . .. Wawy

Definition Period |

A word w is periodic if it is made by repeating a shorter word. Otherwise it is aperiodic.
The period of a periodic word is the length of the shortest word v such that w is a repeat of v.

1.2.3 Necklaces

Definition Necklace

Two words are shift equivalent (denoted w =,,; v) if one can be obtained from the other by some number of shifts.
An equivalence class under this relation, denoted [w],;, is called a necklace.

Notation |

N(n,r) := #{necklaces of length n over an alphabet of size r}

A(n,r) := #{aperiodic necklaces of length n over an alphabet of size r}

Theorem (Macmahon)
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Definition Euler totient function |

p(n) :=#{1<i<n:ged(i,n) =1}

Theorem (Moreau)

N(n,r) =+ 3 pln/d) -

d|n

1.2.4 Bracelets

Definition Bracelet |

Two words are shift-reverse equivalent (denoted w =, v) if one can be obtained from the other by some sequence
of shifts and reverses. An equivalence class under this relation, denoted [w]p,, is called a bracelet.

Definition Symmetric and constant necklaces |

A symmetric necklace is a necklace where the reverse is equal to some number of shifts.
A constant word is a word of the form (z...x) for some z € [r].
A constant necklace is a necklace that has a representative word which is constant.

Notation |

B(n,r) := #{bracelets of length n over an alphabet of size r}

S(n,r) := #{symmetric necklaces of length n over an alphabet of size r}

Lemma |

If n is odd, then for every symmetric necklace s, there is exactly one v € s such that 7(v) = v.

Lemma |

For n even, and every non-constant symmetric necklace s, one of the following holds:
1. There is precisely one v € s such that 7(v) = v and precisely one u € s such that 7(u) = o(u)
2. There are precisely two v € s such that 7(v) = v and no u € s such that 7(u) = o(u)

3. There are no v € s such that 7(v) = v and precisely two u € s such that 7(u) = o(u)

Theorem |

Bln,r) = iN(n,r) + FrntD/2 if n is odd
o iN(n,r)+ 2(r+1)r"/2  if nis even

1.3 Counting graphs

Proposition |

There are 2(2) distinct graphs on the vertex set [n].

1.3.1 Counting trees

Theorem (Cayley)

There are n™~2 distinct trees with vertex set [n].
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Priifer codes |

We can construct the Priifer code (c1,ca,...,c,—2) of a tree T with n vertices as follows:
1. Assign a label (a real number) to each vertex v € V.
2. Repeat the following steps:
(a) Find the leaf v with the smallest label amongst all leaves.
(b) This leaf v has a unique neighbor u. Add u to the code.
(c) Remove v from the tree.
(d)

d) If there are only 2 vertices left, stop.

Proposition Properties of the Priifer code |

1. Leaves of T do not appear in the code.
2. Each vertex v occurs precisely deg(v) — 1 times in the code.

3. If v is the leaf that is first removed and the code for T is (c1,ca, ..., cp_2) then
(ca,...,cn—2) is the code for T'\ v.

4. We can recover the tree T' from its Priifer code (c1, ¢, ..., Ch_2).

1.3.2 Unlabelled graphs

Definition Graph isomorphisml

The graphs G = (V, E) and G’ = (V', E’) are isomorphic, denoted G = G’, if there exists a bijection
0:V =V’ suchthat vw € E <= p(v)p(w) € E

Such a map ¢ is called an isomorphism.

The set of all graphs is partitioned into isomorphism classes, which we also call unlabelled graphs.
We denote:

Isom(G, H) := {isomorphisms from G to H} isom(G, H) := #Isom(G, H)
Notationl
For two sequences (a,,) and (b,,), we denote a,, ~ b, if lim )
n—oo

n

Theorem (Pdlya)

o(3)

n!

The number u,, of unlabelled graphs on n vertices satisfies u, ~

Definition Graph automorphism |

An automorphism of a graph G = (V, E) is an isomorphism from G to itself.

We denote:
Aut(G) := {automorphisms of G} aut(G) := # Aut(G)
Notationl
4, := {(labelled) graphs with vertex set [n]} Uy, := {unlabelled graphs on n vertices}
Lemma |
v(G)!
G| = (@)

aut(Q)
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Lemma |

If 7 is not the identity map, then there exist 2 < k < n and distinct 41,. .., € [n] such that

7T(i1)=i2,...,7r(ik_1)=ik W(ik)Zil

Theorem (Otter)

The number t,, of unlabelled trees satisfies

tp, ~c- n~3 .o c~ 0.534949606 ... o ~ 2.95576528565. ..

2 Recurrences

Definition Recursive relation |

We say that (a,) satisfies a recursion (or recursive relation) of order m if we can write
an = f(an-1,..,an_m,n) foralln>m

where f is some (fixed) function.

Closed-form expression |

We usually want to find an explicit solution (i.e. a function f such that a, = f(n)) for a recurrence,
which does not contain symbols like ", [] or .... This is sometimes called a closed-form expression.

2.1 Linear recurrences with constant coefficients

Definition Linear recursion with constant coefficients |

A linear recursion is of the form

an = fi(n) a1+ ...+ fi(n) - a, + g(n)

If the coefficients do not depend on n, then we speak of a linear recursion with constant coefficients.
If g(n) = 0, the recurrence is homogeneous. Otherwise, it is inhomogeneous.

2.1.1 Homogeneous recurrences

Proposition |

Consider a linear, homogeneous recursion with constant coefficients. Then the set of all sequences that satisfies it:
S :={(an):an+c1an_1+ ...+ Ccnap_m =0 for all n > m}

is a vector space over C. Provided that ¢, # 0, the dimension of this vector space is m.

Definition Characteristic polynomial |

Consider a linear, homogeneous recursion with constant coefficients. Its characteristic polynomial is:
Pl)=2"+ciz™ 4+ ... 4+cm

and its characteristic equation is P(z) = 0.

Theorem Fundamental theorem of a/gebral

Any complex polynomial P(z) of degree n can be written as:

(z—r1)(z=12)...(2 — 1) r1,...,7, €C
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Lemma |

Consider a linear, homogeneous recursion with constant coefficients.
Any r # 0 is a root of the characteristic polynomial if and only if a,, := 7™ is a solution of the recursion.

Proposition |

Consider a linear, homogeneous recursion with constant coefficients. Any r # 0 is a root of the characteristic
polynomial of multiplicity > 4 if and only if the sequence a,, := n'r™ is a solution of the recursion.

Lemma |

Let P be an arbitrary polynomial and 7 € N.
1. If P has a root of multiplicity > i at r then its derivative P’ has a root of multiplicity > — 1 at .

2. If P has a root at r, and P’ has a root of multiplicity > ¢ — 1 at r, then r has multiplicity > 4 in P.

Theorem |

Consider a linear, homogeneous recursion with constant coefficients, and suppose the roots of P(z) are r1,... 7y
with r; having multiplicity m;. Every solution of the recurrence is of the form

an = Pi(n)rl + ...+ Py(n)ry

where P; is a polynomial of degree < m; — 1, and every sequence of this form is a solution of the recurrence.
Alternatively:

mlfl,r,n

_ n n mr—1_n
S =span{r{,...,n [ &N ) rp}

2.1.2 Inhomogeneous recurrences

Theorem |

Consider a linear, inhomogeneous recursion with constant coefficients.

Let a'”) be a (particular) solution of the inhomogeneous recursion.

Then all solutions are of the form a%p) + a%h) for some solution a%h) of the homogeneous case.

Combined with the previous theorem, we have for any linear recursion with constant coefficients:

an = a® + Py (n)r? + ...+ Pu(n)r?

Lemma |

Let cg,c1,...,cm € R with ¢g # 0 and let a,, = n*r™ where k is a nonnegative integer and » € C. Then
Colp + C1Gp—1 + ... + Cnap_m = R(n) - "
where R is a polynomial of degree k + j, and j is the multiplicity of r if r is a root of
P(2) :=coz™ 4+ c12™ 1+ ...+ cm

and 0 otherwise. Moreover, the coefficient of n*~7 in R is

() 220
J rmTy

where PU) denotes the j-th derivative of P.
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Theorem |

Consider an inhomogeneous recursion with linear coefficients of the following form:

ap +c1an-1+ ...+ Cnap_m=Q(n) - 1"
where Q(n) is a polynomial of degree k. There is a particular solution:

o) = R(n) - r(n)

where R is a polynomial of degree k + 7, and j is the multiplicity of r if r is a root of P(z), and 0 otherwise.

2.2 Ordinary generating functions

Definition Generating function |

If ag,aq, ... is a sequence of numbers then its (ordinary) generating function is the following power series:
o0
A(z) := Zanz” =ag+aiz+byz2®+ ...
n=0

We use the notation [2"]A(z) := a,, for the coefficient of z, in A(z).

Proposition |

Let A(z) and B(z) be generating functions with positive radius of convergence:

A(z) :ao+alz+bgz2+...:2an2" B(z) =by+biz+b2+...= anz"
n=0 n=0

Then the the following are also generating functions with positive radius of convergence.

oo

1. A(2) + B(2) = (ap + bo) + (a1 + b1)z + (a2 + b2)2% + ... = Z(an +bp)2"

n=0

2. A(2)-B(2) = agbo + (agb1 +a1bo)z + (agbz +a1by +asbg)2? = Z Zn - (Z aibn_i> (Convolution formula)
i=0

n=0
3. Al(z) = Znanz"_l = Z(n + Dap412"
n=0 n=0

z e’} 1 c>o1
4. A dt = n2 Tl = Zap_12"

Proposition |

Suppose (a,,) is a sequence such that |a,| < K™ for some constant K > 0.
Then the power series A(z) has a positive radius of convergence and the derivatives of A of all orders exist at 0,

and satisfy: -
AM™(0) =n!-ay,

where A denotes the n-th derivative of A.
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Examples of generating functions
Sequence Generating function
ag,a1,as,. .. A(z)
0,a9,a1, ... aA(z)
ai,as,as,. .. % - (A(z) — ao)
a9,0,a1,0,as,... A(2?)
a9,0,a3,0,a4,... —(A(2) + A(—=2))
Partial sums of (a,) = i . A(z)
Fibonacci sequence T zl_ P

2.2.1 Generalized binomial coefficient

Definition Generalized binomial coefficientl
For a € R and n € Ny, the generalized binomial coefficient is given by:

(a) _afa=1-..(a=n+l)

n n!

Theorem Generalized binomial theorem |

For |z| < 1 and o € R we have

2.2.2 Catalan numbers

Definition Catalan numbers

1 <2n>
Gp =
n+1\n
Definition Dyck word and path

A Dyck word is a word w = wjws . .. wa, over the alphabet {0, 1} of length 2n with exactly n zeroes and n ones,
such that for each ¢ < 2n, the number of ones in w; ... w; is greater than or equal to the number of zeroes.

A Dyck path is a path of length 2n in the integer grid {0,...,n} x {0,...,n} with the property that the path starts
at the origin (0,0), ends at (n,n), at each step either goes right or up, and is never below the diagonal y = x.

Proposition |

The following are equal to the Catalan number c¢,:

e The number of ways to add non-intersecting line segments between the corner points of a convex n-gon
such that the line segments dissect the polygon into triangles.

e The number of Dyck words of length 2n
e The number of Dyck paths of length 2n

e The number of planted plane trees (explained further in lecture 9, page 4)
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Definition Pattern-avoiding permutations |

Let o € Sy be a permutation of [k]. A permutation 7 € S,, of [n] contains the pattern o if:
there exist 4y <ip < ... <1 suchthat 7(iz-11)) < 7(ip-102)) <+ < T(ig-1())
We say 7 avoids o if it does not contain the pattern o, and for notational convenience we set:

Av(n,o) :=={r € S, : ™ avoids o} av(n,o) := | Av(n,o)|

Theorem |

av(n, o) is equal to the Catalan number ¢, for all o € Ss.

2.3 Exponential generating functions

Definition Exponential generating function |

The exponential generating function of the sequence ag, a1, as, ... is:

" ad z"
A(z) = Z an
n=0 ’

Examples of transformed exponential generating functions |

Sequence EGF

ap,a1,0a2, ... A(z)
1,1,1,... e?

ai,a2,03,. .. A’(z)

0,a9,a1,... f:(z)

O, ai, 2(12, 3(13, v ZA(Z)

Proposition Binomial convolution formu/al

i) B =3 . (:) (’Z) e bn_i>

n=0 3

Definition Multinomial coefficientl

n!

( " >_ll (provided ny + -+ - + nx = n)
ny,...,Ng Ny "Nk

2.3.1 Bernoulli numbers

Definition Bernoulli numbers

The Bernoulli numbers are defined recursively by:

bo =1, i(kﬂ)bj:o (k>1)

=0 7

Theorem Faulhaber's formu/al

n—1
1 k+1 k+1 k+1 k+1
ko k+1 k k—1
= b - by - by - by -
2 k+1<(0>°” *(1)1’”(2)2”**(1:)’“”)
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2.3.2 Stirling numbers

Definition Stirling numbers of the second kind |

We denote the number of ordered partitions of [n] into & non-empty parts by o, ;.. The Stirling numbers of the
second kind, denoted u,,  or {}}, are the number of unordered partitions of [n] into k non-empty parts.

Partitions of [n] into k non-empty parts

k : 1 1 &k :
Ok = Z < .)jn(l)ky Unk = 27 Onk = 77 Z <j>jn(1)kJ
! | =

Definition Bell numbers |

The Bell number b, is the total number of unordered partitions of [n], into any number of parts.

Theorem Dobirisky'’s formula |

by =

Q|-

oo k"
k=0

Definition Stirling numbers of the first kind

The (unsigned) Stirling number of the first kind, denoted s,, ; or [}], is the number of permutations 7 € S,, that
have exactly k cycles. The signed Stirling numbers of the first kind are (—1)" "% - 5,, ;.

Lemma |

n—+1 n n
= 0 >
EEETs

Proposition

I

Corollary

m _ T Geed

0<i1 < <ip—r<n

Theorem Stirling inversion |

Let (a,) and (b,) be sequences of numbers.

n

b, = Z {Z}ak for all n — ap = Z(—l)”‘k [Z} b, foralln
k=0

k=0

3 Extremal graph and set theory

3.1 Ramsey theory

Definition Ramsey numbers |

R(s,t) :=inf{n : in every red-blue colouring of the edges of K, there is either a red K or a blue K;}

Theorem (Ramsey)

R(s,t) < oo for all s,t € N.
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Theorem (Erdds)

If n,t satisfy (?)217(;) < 1, then R(t,t) > n.

Theorem (Erdés-Szekeres)

R(s+1,t+1) < R(s,t+1)+ R(s+ 1,t) for all s,t >1

Corollary |

R(s,t) < 25Tt for all s,t > 1.

Theorem |

V2 < R(t,t) < 4t

3.2 High girth and chromatic number

Definition Chromatic number |

A k-colouring of a graph G is a map f : V(G) — [k] with the property that f(u) # f(v) whenever uv € E(G).
The chromatic number of G, denoted x(G), is the least k for which a k-colouring exists.

Definition Stable set |

A stable set in a graph G is a subset A C V(G) of the vertices such that ab ¢ E(G) for all a,b € A.
The stability number or independence number of G, denoted a(G), is the cardinality of the largest stable set.

Definition Girth |

The girth of a graph G is the length of the shortest cycle in G.

Theorem (Erdds)

For every k, ¢ there exists a graph G with x(G) > k and girth(G) > /.

3.3 Crossing numbers

Definition Crossing number |

The crossing number cr(G) of a graph G is the least number of crossings in a drawing of G in the plane.
The rectilinear crossing number rcr(G) of G is the minimum number of crossings in a rectilinear drawing of G.
A rectilinear drawing is a drawing of a graph where all edges are straight line segments.

Theorem Crossing number inequality |

provided e(G) > 4v(QG)

Theorem (Euler)

v(G) —e(G) + f(G) =2

Corollary |

If G is planar then ¢(G) < 3v(G); if G is planar and v(G) > 3 then ¢(G) < 3v(G) — 6.

Theorem (Wagner)

If G is planar then it has a rectilinear drawing that is crossing free.
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Theorem (Bienstock-Dean)

1. If er(G) < 3 then rer(G) = cr(G)
2. For every k, there exists a graph G with cr(G) = 4 and rcr(G) > k.

3.3.1 Point-line incidences and unit distances

Definition Point-line incidences |

Let P C R2 be a set of points and L a set of lines. The number of point-line incidences is defined as:

I(P,L) :=#{(p,{) :pe P,L € L,pc l}

Theorem (Szemerédi-Trotter)

I(P,L) < 4(IP||L)*/® + |L| + 4| P|

Definition Maximum number of unit distances |

u(n) = e #{(p,q) : p,q € P,|lp—q| = 1}}
|P|=n

Theorem (Erdés)

For n sufficiently large, there exists a constant ¢ > 0 such that u(n) > n'*eeiozn .

Theorem (Spencer,Szemerédi, Trotter)

u(n) = O(n*?)

3.4 Extremal set theory

Definition Intersecting and uniform fami/yl

Let V be a finite set. A family .7 C 2V of subsets of V is intersecting if AN B # @ for all A, B € .Z.
A family .Z is k-uniform, denoted .# C (V) if all sets in .Z have cardinality k.

k
Proposition |

Let V be a finite set with n elements and let # C 2V. If .7 is intersecting, then |#| < 2771
(Note: this bound is attained by % = {A CV : v € A} for some arbitrary v € V)

Lemma |

Let V be a finite set, o : V — V a permutation and .% C (z) an intersecting family. Define:
As :={s,s+1,...,s+k—1} A? :={o(s),0(s+1),...,0(s+k—1)}

where addition is modulo n. Then:
e .7 contains at most k of the sets Ag, A1,..., A1

e For every permutation o, .% contains at most k of the sets A§, A],..., A%_,

Theorem (Erdés-Ko-Rado)

=1
If V' is finite, k < % and .7 C ‘2) is intersecting, then |7 | < <|Z|_ . >

(Note: this bound is attained by .# = {A C V : |A| = k,v € A} for some arbitrary v € V)




3.5 More extremal graph theory 14 3 EXTREMAL GRAPH AND SET THEORY

Theorem |

Let .# C 2" be a family of subsets of [n] such that
1. |F|is odd for all F € &
2. |[F NG| is even for all for all distinct F,G € .Z.
Then |.#| < n. (Note: this bound is attained by .% = {{1},{2},...,{n}}.)

Theorem Generalized Fisher inequality |

Let .#7 C 2[" and 1 < t < n be such that |F NG| =t for all distinct F,G € .%. Then |Z| <n

3.5 More extremal graph theory

Theorem |

K, cannot be decomposed into fewer then n — 1 complete bipartite graphs, for every n > 1.

Theorem (Hoffman, Singleton)

If there exists a graph G with girth(G) > 5, all degrees > k and v(G) = k? + 1, then k € {1,2,3,7,57}.
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