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Note

The following have been omitted from these notes for conciseness:

• Spanning trees of the fan graph (lecture 8 page 7)

• Counting the number of ways to pay n¤ (lecture 8 page 9)

• Planted plane trees (lecture 9 page 4)

• Probabilistic method (lecture 12, lecture 13 page 2, lecture 14 page 2)

• Linear algebra method (lecture 14 page 3, lecture 15)

1 Combinatorics

1.1 Introduction

Notation: [n] := {1, 2, . . . , n}

Number of ways to choose elements from a set

Number of ways to choose k balls from an urn containing n balls:

• With order, with replacement: nk

• With order, without replacement: (n)k :=
n!

(n− k)!
(falling factorial)

• Without order, without replacement:

(
n

k

)
:=

n!

k!(n− k)!
(binomial coefficient)

• Without order, with replacement:

(
n+ k − 1

k

)
The number of vectors in {0, 1}k with exactly k ones is equal to

(
n

k

)
.

A multiset is a generalization of a set which allows duplicates.

Binomial notation for sets (
V

k

)
:= {A ⊆ V : |A| = k}

∣∣∣∣(Vk
)∣∣∣∣ = (|V |

k

)

Pigeon-hole principle

Pigeon-hole principle:
If p pigeons are divided among h < p pigeon-holes, then some hole has ≥ 2 pigeons.
Advanced pigeon-hole principle:
If p pigeons are divided among h pigeon-holes with h(t− 1) < p, then some hole has ≥ t pigeons.

Theorem Inclusion-exclusion principle

Let V1, . . . , Vk be subsets of a finite set V .

|V1 ∪ V2 ∪ . . . ∪ Vk| =
k∑

r=1

(−1)r+1

 ∑
1≤i1<ir≤k

|Vi1 ∩ . . . ∩ Vik |


|V \ (V1 ∪ V2 ∪ . . . ∪ Vk)| = |V |+

k∑
r=1

(−1)r

 ∑
1≤i1<ir≤k

|Vi1 ∩ . . . ∩ Vik |



Derangements

A derangement is a permutation with no fixed points. #(derangements of [n]) =

⌊
n!

e
+

1

2

⌋
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1.2 Counting circular words

1.2.1 The Möbius function

Theorem Prime decomposition theorem

For every positive integer n ∈ N there is precisely one way to write it as

n = pe11 pe22 . . . pekk

where k ∈ N, p1, . . . , pk are primes, and e1, . . . , en ∈ N.

Definition Möbius function

µ(n) :=


1 if n = 1

0 if n | p2 for some prime p

(−1)k if n is the product of k distinct primes

Lemma ∑
d|n

µ(n) = 1{1} ∀n ∈ N

Theorem Möbius inversion theorem

Let F,G : N → R.

F (n) =
∑
d|n

G(d) ∀n ∈ N =⇒ G(n) =
∑
d|n

µ(d)F
(n
d

)
∀n ∈ N

1.2.2 Words

Definition Words

Let A be an alphabet (a finite set). A word of length n is a sequence of length n of symbols in A.

We can define two maps on words:

Shift map: σ(w1 . . . wn) := w2 . . . wnw1 Reverse map: τ(w1 . . . wn) = wnwn−1 . . . w2w1

Definition Period

A word w is periodic if it is made by repeating a shorter word. Otherwise it is aperiodic.
The period of a periodic word is the length of the shortest word v such that w is a repeat of v.

1.2.3 Necklaces

Definition Necklace

Two words are shift equivalent (denoted w ≡nl v) if one can be obtained from the other by some number of shifts.
An equivalence class under this relation, denoted [w]nl, is called a necklace.

Notation

N(n, r) := #{necklaces of length n over an alphabet of size r}

A(n, r) := #{aperiodic necklaces of length n over an alphabet of size r}

Theorem (Macmahon)

A(n, r) =
1

n

∑
d|n

µ(d) · r n
d
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Definition Euler totient function

φ(n) := #{1 ≤ i ≤ n : gcd(i, n) = 1}

Theorem (Moreau)

N(n, r) =
1

n

∑
d|n

φ(n/d) · rd

1.2.4 Bracelets

Definition Bracelet

Two words are shift-reverse equivalent (denoted w ≡br v) if one can be obtained from the other by some sequence
of shifts and reverses. An equivalence class under this relation, denoted [w]br, is called a bracelet.

Definition Symmetric and constant necklaces

A symmetric necklace is a necklace where the reverse is equal to some number of shifts.
A constant word is a word of the form (x . . . x) for some x ∈ [r].
A constant necklace is a necklace that has a representative word which is constant.

Notation

B(n, r) := #{bracelets of length n over an alphabet of size r}

S(n, r) := #{symmetric necklaces of length n over an alphabet of size r}

Lemma

If n is odd, then for every symmetric necklace s, there is exactly one v ∈ s such that τ(v) = v.

Lemma

For n even, and every non-constant symmetric necklace s, one of the following holds:

1. There is precisely one v ∈ s such that τ(v) = v and precisely one u ∈ s such that τ(u) = σ(u)

2. There are precisely two v ∈ s such that τ(v) = v and no u ∈ s such that τ(u) = σ(u)

3. There are no v ∈ s such that τ(v) = v and precisely two u ∈ s such that τ(u) = σ(u)

Theorem

B(n, r) =

{
1
2N(n, r) + 1

2r
(n+1)/2 if n is odd

1
2N(n, r) + 1

4 (r + 1)rn/2 if n is even

1.3 Counting graphs

Proposition

There are 2(
n
2) distinct graphs on the vertex set [n].

1.3.1 Counting trees

Theorem (Cayley)

There are nn−2 distinct trees with vertex set [n].
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Prüfer codes

We can construct the Prüfer code (c1, c2, . . . , cn−2) of a tree T with n vertices as follows:

1. Assign a label (a real number) to each vertex v ∈ V .

2. Repeat the following steps:

(a) Find the leaf v with the smallest label amongst all leaves.

(b) This leaf v has a unique neighbor u. Add u to the code.

(c) Remove v from the tree.

(d) If there are only 2 vertices left, stop.

Proposition Properties of the Prüfer code

1. Leaves of T do not appear in the code.

2. Each vertex v occurs precisely deg(v)− 1 times in the code.

3. If v is the leaf that is first removed and the code for T is (c1, c2, . . . , cn−2) then
(c2, . . . , cn−2) is the code for T \ v.

4. We can recover the tree T from its Prüfer code (c1, c2, . . . , cn−2).

1.3.2 Unlabelled graphs

Definition Graph isomorphism

The graphs G = (V,E) and G′ = (V ′, E′) are isomorphic, denoted G ∼= G′, if there exists a bijection

φ : V → V ′ such that vw ∈ E ⇐⇒ φ(v)φ(w) ∈ E′

Such a map φ is called an isomorphism.
The set of all graphs is partitioned into isomorphism classes, which we also call unlabelled graphs.
We denote:

Isom(G,H) := {isomorphisms from G to H} isom(G,H) := # Isom(G,H)

Notation

For two sequences (an) and (bn), we denote an ∼ bn if lim
n→∞

an
bn

= 1

Theorem (Pólya)

The number un of unlabelled graphs on n vertices satisfies un ∼ 2(
n
2)

n!

Definition Graph automorphism

An automorphism of a graph G = (V,E) is an isomorphism from G to itself.
We denote:

Aut(G) := {automorphisms of G} aut(G) := #Aut(G)

Notation

Gn := {(labelled) graphs with vertex set [n]} Un := {unlabelled graphs on n vertices}

Lemma

|GG| =
v(G)!

aut(G)
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Lemma

If π is not the identity map, then there exist 2 ≤ k ≤ n and distinct i1, . . . , ik ∈ [n] such that

π(i1) = i2, . . . , π(ik−1) = ik π(ik) = i1

Theorem (Otter)

The number tn of unlabelled trees satisfies

tn ∼ c · n− 5
2 · αn c ≈ 0.534949606 . . . α ≈ 2.95576528565 . . .

2 Recurrences

Definition Recursive relation

We say that (an) satisfies a recursion (or recursive relation) of order m if we can write

an = f(an−1, ..., an−m, n) for all n ≥ m

where f is some (fixed) function.

Closed-form expression

We usually want to find an explicit solution (i.e. a function f such that an = f(n)) for a recurrence,
which does not contain symbols like

∑
,
∏

or . . .. This is sometimes called a closed-form expression.

2.1 Linear recurrences with constant coefficients

Definition Linear recursion with constant coefficients

A linear recursion is of the form

an = f1(n) · a1 + . . .+ fm(n) · an + g(n)

If the coefficients do not depend on n, then we speak of a linear recursion with constant coefficients.
If g(n) = 0, the recurrence is homogeneous. Otherwise, it is inhomogeneous.

2.1.1 Homogeneous recurrences

Proposition

Consider a linear, homogeneous recursion with constant coefficients. Then the set of all sequences that satisfies it:

S := {(an) : an + c1an−1 + . . .+ cman−m = 0 for all n ≥ m}

is a vector space over C. Provided that cm ̸= 0, the dimension of this vector space is m.

Definition Characteristic polynomial

Consider a linear, homogeneous recursion with constant coefficients. Its characteristic polynomial is:

P (z) = zm + c1z
m−1 + . . .+ cm

and its characteristic equation is P (z) = 0.

Theorem Fundamental theorem of algebra

Any complex polynomial P (z) of degree n can be written as:

(z − r1)(z − r2) . . . (z − rn) r1, . . . , rn ∈ C
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Lemma

Consider a linear, homogeneous recursion with constant coefficients.
Any r ̸= 0 is a root of the characteristic polynomial if and only if an := rn is a solution of the recursion.

Proposition

Consider a linear, homogeneous recursion with constant coefficients. Any r ̸= 0 is a root of the characteristic
polynomial of multiplicity > i if and only if the sequence an := nirn is a solution of the recursion.

Lemma

Let P be an arbitrary polynomial and i ∈ N.

1. If P has a root of multiplicity > i at r then its derivative P ′ has a root of multiplicity > i− 1 at r.

2. If P has a root at r, and P ′ has a root of multiplicity > i− 1 at r, then r has multiplicity > i in P .

Theorem

Consider a linear, homogeneous recursion with constant coefficients, and suppose the roots of P (z) are r1, . . . , rk
with rj having multiplicity mj . Every solution of the recurrence is of the form

an = P1(n)r
n
1 + . . .+ Pk(n)r

n
k

where Pj is a polynomial of degree ≤ mj − 1, and every sequence of this form is a solution of the recurrence.
Alternatively:

S = span{rn1 , . . . , nm1−1rn1 , . . . , r
n
k , . . . , n

mk−1rnk}

2.1.2 Inhomogeneous recurrences

Theorem

Consider a linear, inhomogeneous recursion with constant coefficients.

Let a
(p)
n be a (particular) solution of the inhomogeneous recursion.

Then all solutions are of the form a
(p)
n + a

(h)
n for some solution a

(h)
n of the homogeneous case.

Combined with the previous theorem, we have for any linear recursion with constant coefficients:

an = a(h)n + P1(n)r
n
1 + . . .+ Pk(n)r

n
k

Lemma

Let c0, c1, . . . , cm ∈ R with c0 ̸= 0 and let an = nkrn where k is a nonnegative integer and r ∈ C. Then

c0an + c1an−1 + . . .+ cman−m = R(n) · rn

where R is a polynomial of degree k + j, and j is the multiplicity of r if r is a root of

P (z) := c0z
m + c1z

m−1 + . . .+ cm

and 0 otherwise. Moreover, the coefficient of nk−j in R is(
k

j

)
· P

(j)(r)

rm−j

where P (j) denotes the j-th derivative of P .
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Theorem

Consider an inhomogeneous recursion with linear coefficients of the following form:

an + c1an−1 + . . .+ cman−m = Q(n) · rn

where Q(n) is a polynomial of degree k. There is a particular solution:

a(p)n = R(n) · r(n)

where R is a polynomial of degree k + j, and j is the multiplicity of r if r is a root of P (z), and 0 otherwise.

2.2 Ordinary generating functions

Definition Generating function

If a0, a1, . . . is a sequence of numbers then its (ordinary) generating function is the following power series:

A(z) :=

∞∑
n=0

anz
n = a0 + a1z + b2z

2 + . . .

We use the notation [zn]A(z) := an for the coefficient of zn in A(z).

Proposition

Let A(z) and B(z) be generating functions with positive radius of convergence:

A(z) = a0 + a1z + b2z
2 + . . . =

∞∑
n=0

anz
n B(z) = b0 + b1z + b2z

2 + . . . =

∞∑
n=0

bnz
n

Then the the following are also generating functions with positive radius of convergence.

1. A(z) +B(z) = (a0 + b0) + (a1 + b1)z + (a2 + b2)z
2 + . . . =

∞∑
n=0

(an + bn)z
n

2. A(z) ·B(z) = a0b0+(a0b1+a1b0)z+(a0b2+a1b1+a2b0)z
2 =

∞∑
n=0

zn ·

(
n∑

i=0

aibn−i

)
(Convolution formula)

3. A′(z) =

∞∑
n=0

nanz
n−1 =

∞∑
n=0

(n+ 1)an+1z
n

4.

ˆ z

0

A(t) dt =

∞∑
n=0

1

n+ 1
anz

n+1 =

∞∑
n=0

1

n
an−1z

n

Proposition

Suppose (an) is a sequence such that |an| < Kn for some constant K > 0.
Then the power series A(z) has a positive radius of convergence and the derivatives of A of all orders exist at 0,
and satisfy:

A(n)(0) = n! · an
where A(n) denotes the n-th derivative of A.
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Examples of generating functions

Sequence Generating function

a0, a1, a2, . . . A(z)

0, a0, a1, . . . aA(z)

a1, a2, a3, . . .
1

z
· (A(z)− a0)

a0, 0, a1, 0, a2, . . . A(z2)

a0, 0, a2, 0, a4, . . .
1

2
(A(z) +A(−z))

Partial sums of (an)
1

1− z
·A(z)

Fibonacci sequence
1

1− z − z2

2.2.1 Generalized binomial coefficient

Definition Generalized binomial coefficient

For α ∈ R and n ∈ N0, the generalized binomial coefficient is given by:(
α

n

)
:=

α · (α− 1) · . . . · (α− n+ 1)

n!

Theorem Generalized binomial theorem

For |z| < 1 and α ∈ R we have

(1 + z)α =

∞∑
n=0

(
α

n

)
zn

2.2.2 Catalan numbers

Definition Catalan numbers

cn =
1

n+ 1

(
2n

n

)

Definition Dyck word and path

A Dyck word is a word w = w1w2 . . . w2n over the alphabet {0, 1} of length 2n with exactly n zeroes and n ones,
such that for each i ≤ 2n, the number of ones in w1 . . . wi is greater than or equal to the number of zeroes.

A Dyck path is a path of length 2n in the integer grid {0, . . . , n}×{0, . . . , n} with the property that the path starts
at the origin (0, 0), ends at (n, n), at each step either goes right or up, and is never below the diagonal y = x.

Proposition

The following are equal to the Catalan number cn:

• The number of ways to add non-intersecting line segments between the corner points of a convex n-gon
such that the line segments dissect the polygon into triangles.

• The number of Dyck words of length 2n

• The number of Dyck paths of length 2n

• The number of planted plane trees (explained further in lecture 9, page 4)
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Definition Pattern-avoiding permutations

Let σ ∈ Sk be a permutation of [k]. A permutation π ∈ Sn of [n] contains the pattern σ if:

there exist i1 < i2 < . . . < ik such that π(iσ−1(1)) < π(iσ−1(2)) < · · · < π(iσ−1(k))

We say π avoids σ if it does not contain the pattern σ, and for notational convenience we set:

Av(n, σ) := {π ∈ Sn : π avoids σ} av(n, σ) := |Av(n, σ)|

Theorem

av(n, σ) is equal to the Catalan number cn for all σ ∈ S3.

2.3 Exponential generating functions

Definition Exponential generating function

The exponential generating function of the sequence a0, a1, a2, . . . is:

Â(z) :=

∞∑
n=0

an
zn

n!

Examples of transformed exponential generating functions

Sequence EGF

a0, a1, a2, . . . Â(z)
1, 1, 1, . . . ez

a1, a2, a3, . . . Â′(z)

0, a0, a1, . . .
´
Â(z)

0, a1, 2a2, 3a3, . . . zÂ(z)

Proposition Binomial convolution formula

Â(z) · B̂(z) =

∞∑
n=0

zn

n!
·

(
n∑

i=0

(
n

i

)
· ai · bn−i

)

Definition Multinomial coefficient(
n

n1, . . . , nk

)
=

n!

n1! · · ·nk!
(provided n1 + · · ·+ nk = n)

2.3.1 Bernoulli numbers

Definition Bernoulli numbers

The Bernoulli numbers are defined recursively by:

b0 = 1,

k∑
j=0

(
k + 1

j

)
· bj = 0 (k ≥ 1)

Theorem Faulhaber’s formula

n−1∑
i=0

ik =
1

k + 1
·
((

k + 1

0

)
· b0 · nk+1 +

(
k + 1

1

)
· b1 · nk +

(
k + 1

2

)
· b2 · nk−1 + · · ·+

(
k + 1

k

)
· bk · n

)
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2.3.2 Stirling numbers

Definition Stirling numbers of the second kind

We denote the number of ordered partitions of [n] into k non-empty parts by on,k. The Stirling numbers of the
second kind, denoted un,k or

{
n
k

}
, are the number of unordered partitions of [n] into k non-empty parts.

Partitions of [n] into k non-empty parts

on,k =

k∑
j=0

(
k

j

)
jn(−1)k−j un,k =

1

k!
· on,k =

1

k!
·

k∑
j=0

(
k

j

)
jn(−1)k−j

Definition Bell numbers

The Bell number bn is the total number of unordered partitions of [n], into any number of parts.

Theorem Dobińsky’s formula

bn =
1

e
·

∞∑
k=0

kn

k!

Definition Stirling numbers of the first kind

The (unsigned) Stirling number of the first kind, denoted sn,k or
[
n
k

]
, is the number of permutations π ∈ Sn that

have exactly k cycles. The signed Stirling numbers of the first kind are (−1)n−k · sn,k.

Lemma [
n+ 1

k

]
=

[
n

k − 1

]
+ n ·

[
n

k

]
for all n, k ≥ 1

Proposition

(z)n =

n∑
k=0

(−1)n−k

[
n
k

]
zk

Corollary [
n

k

]
=

∑
0<i1<···<in−k<n

i1 · · · in−k

Theorem Stirling inversion

Let (an) and (bn) be sequences of numbers.

bn =

n∑
k=0

{
n

k

}
ak for all n ⇐⇒ an =

n∑
k=0

(−1)n−k

[
n

k

]
bk for all n

3 Extremal graph and set theory

3.1 Ramsey theory

Definition Ramsey numbers

R(s, t) := inf{n : in every red-blue colouring of the edges of Kn there is either a red Ks or a blue Kt}

Theorem (Ramsey)

R(s, t) < ∞ for all s, t ∈ N.
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Theorem (Erdös)

If n, t satisfy
(
n
t

)
21−(

t
2) < 1, then R(t, t) > n.

Theorem (Erdös-Szekeres)

R(s+ 1, t+ 1) ≤ R(s, t+ 1) +R(s+ 1, t) for all s, t ≥ 1

Corollary

R(s, t) ≤ 2s+t for all s, t ≥ 1.

Theorem
√
2
t
≤ R(t, t) ≤ 4t

3.2 High girth and chromatic number

Definition Chromatic number

A k-colouring of a graph G is a map f : V (G) → [k] with the property that f(u) ̸= f(v) whenever uv ∈ E(G).
The chromatic number of G, denoted χ(G), is the least k for which a k-colouring exists.

Definition Stable set

A stable set in a graph G is a subset A ⊆ V (G) of the vertices such that ab /∈ E(G) for all a, b ∈ A.
The stability number or independence number of G, denoted α(G), is the cardinality of the largest stable set.

Definition Girth

The girth of a graph G is the length of the shortest cycle in G.

Theorem (Erdös)

For every k, ℓ there exists a graph G with χ(G) > k and girth(G) > ℓ.

3.3 Crossing numbers

Definition Crossing number

The crossing number cr(G) of a graph G is the least number of crossings in a drawing of G in the plane.
The rectilinear crossing number rcr(G) of G is the minimum number of crossings in a rectilinear drawing of G.
A rectilinear drawing is a drawing of a graph where all edges are straight line segments.

Theorem Crossing number inequality

cr(G) ≥ e(G)3

64v(G)2
provided e(G) ≥ 4v(G)

Theorem (Euler)

v(G)− e(G) + f(G) = 2

Corollary

If G is planar then e(G) ≤ 3v(G); if G is planar and v(G) ≥ 3 then e(G) ≤ 3v(G)− 6.

Theorem (Wagner)

If G is planar then it has a rectilinear drawing that is crossing free.
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Theorem (Bienstock-Dean)

1. If cr(G) ≤ 3 then rcr(G) = cr(G)

2. For every k, there exists a graph G with cr(G) = 4 and rcr(G) > k.

3.3.1 Point-line incidences and unit distances

Definition Point-line incidences

Let P ⊆ R2 be a set of points and L a set of lines. The number of point-line incidences is defined as:

I(P,L) := #{(p, ℓ) : p ∈ P, ℓ ∈ L, p ∈ ℓ}

Theorem (Szemerédi-Trotter)

I(P,L) ≤ 4(|P ||L|)2/3 + |L|+ 4|P |

Definition Maximum number of unit distances

u(n) := max
P⊆R2

|P |=n

#{(p, q) : p, q ∈ P, ∥p− q∥ = 1}}

Theorem (Erdös)

For n sufficiently large, there exists a constant c > 0 such that u(n) > n1+ c
log log n .

Theorem (Spencer,Szemerédi,Trotter)

u(n) = O(n4/3)

3.4 Extremal set theory

Definition Intersecting and uniform family

Let V be a finite set. A family F ⊆ 2V of subsets of V is intersecting if A ∩B ̸= ∅ for all A,B ∈ F .
A family F is k-uniform, denoted F ⊆

(
V
k

)
, if all sets in F have cardinality k.

Proposition

Let V be a finite set with n elements and let F ⊆ 2V . If F is intersecting, then |F | ≤ 2n−1

(Note: this bound is attained by F = {A ⊆ V : v ∈ A} for some arbitrary v ∈ V )

Lemma

Let V be a finite set, σ : V → V a permutation and F ⊆
(
V
k

)
an intersecting family. Define:

As := {s, s+ 1, . . . , s+ k − 1} Aσ
s := {σ(s), σ(s+ 1), . . . , σ(s+ k − 1)}

where addition is modulo n. Then:

• F contains at most k of the sets A0, A1, . . . , An−1

• For every permutation σ, F contains at most k of the sets Aσ
0 , A

σ
1 , . . . , A

σ
n−1

Theorem (Erdös-Ko-Rado)

If V is finite, k ≤ |V |
2

and F ⊆
(
V

k

)
is intersecting, then |F | ≤

(
|V | − 1

k − 1

)
(Note: this bound is attained by F = {A ⊆ V : |A| = k, v ∈ A} for some arbitrary v ∈ V )
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Theorem

Let F ⊆ 2[n] be a family of subsets of [n] such that

1. |F | is odd for all F ∈ F

2. |F ∩G| is even for all for all distinct F,G ∈ F .

Then |F | ≤ n. (Note: this bound is attained by F = {{1}, {2}, . . . , {n}}.)

Theorem Generalized Fisher inequality

Let F ⊆ 2[n] and 1 ≤ t ≤ n be such that |F ∩G| = t for all distinct F,G ∈ F . Then |F | ≤ n

3.5 More extremal graph theory

Theorem

Kn cannot be decomposed into fewer then n− 1 complete bipartite graphs, for every n ≥ 1.

Theorem (Hoffman, Singleton)

If there exists a graph G with girth(G) ≥ 5, all degrees ≥ k and v(G) = k2 + 1, then k ∈ {1, 2, 3, 7, 57}.
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